
The Painleve test, hidden symmetries and the equation y"+yy'+Ky3=0

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 5017

(http://iopscience.iop.org/0305-4470/26/19/030)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 5017-5024. Rinted in the UK 

The Painlev6 test, hidden symmetries and the equation 
y” + yy’ + ky3 = 0 

R L Lemmer and P G L Leachi 
Department of Mathematics and Applied Mathematics, University of Natal, King George V 
Avenue, Duban, 4001, South Africa 

Received 24 February 1993, in final fom 26 May 1993 

Abstract. For general values of the parameter, k. the equation y” + yy‘ + ky3 = 0 can be 
reduced to quadrature via a Lie algebraic approach. either direct or thmugh bidden symmetries. 
For specific values of k, mostly in (6, i). the solution can be expressed in parametric form. For 
these values of k the equation passes the weak Painlev6 teSt For some other values of k the 
equation passes the Fainlev6 tesf but the solution cannot in general be expressed parametrically. 

1. Introduction 

The differential equation 

has occurred in studies in a variety of fields such as univalued functions defined by second 
order differential equations (Golubev 1950). the generalized Emden equation (Moreira 1984, 
Leach 1985). the Riccati equation (Chisholm and Common 1987) and in the modelling of 
the fusion of pellets (Erwin et a2 1984), has itself been the object of study by Mahomed 
and Leach (1985), Leach et a1 (1988) and Abraham-Shrauner (1992) and as one of a class 
of equations by Bouquet et al (1991). These studies were mainly concerned with the Lie 
point symmetries of (1.1) and numerical properties of the solution for various values of the 
parameter k. 

For general values of the parameter, k, equation (1.1) is invariant under the actions of 
the second extensions of the Lie point symmetries 

a 
G,  =- ax 

associated with invariance under translation in the independent variable and 
a a Gz = x- - y- 

ax ay 

which is the generator of self-similar transformations. In the particular case that k = 4 
(1.1) possesses eight Lie point symmetries (Mahomed and Leach, 1985) with the algebra 
d ( 3 ,  R) which implies that the equation is linearizable. The transformation is 

(1.4) 
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Although the value of k = $ is significant in terms of the Lie algebraic properties of (Ll), 
this is not a critical value of k as far the behaviour of the solution is concemed. That value 
is k = 

An interesting feature of (1.1) is that it has hidden symmetries associated with it no 
matter the value of k (Abraham-Shrauner 1992) in that it is related to a liiear second-order 
equation by means of a non-local transformation. 

The focal point of the study of any differential equation is the question of its integrability. 
Three approaches to this question are Lie analysis, Painlev6 analysis and numerical studies. 
The purpose of this paper is to provide a unified treatment of (1.1) so that already known 
features are connected to some which have yet to be explored. In particular we compare 
two methods of reducing (1.1) to quadratures with the results of the Painlev6 analysis of 
the equation. From this comparison we will see that the passing of the Painlev6 or weak 
Painlev6 test and the reduction to a parametric solution via the symmetries are closely 
related. 

The parameter, k, which appears in (1.1) is written in that form for the convenience of 
the presentation of the equation. In the analysis which follows in the following sections it 
will be seen that another parameter, related to k, emerges naturally. As we wish to relate 
the reduction to quadrature to the results of the Painlev6 analysis, we initiate that analysis 
first. 
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(Leach er a1 1988). 

2. Painlevi analysis: initial considerations 

Following the procedure outlined in Ramani er nl (1989) we determine the leading-order 
behaviour by setting 

where x = x - XO. and find that there is a simple pole ( p  - l), that all terms are dominant 
and that the coefficient a satisfies 

The resonances are found by substituting 

y = ffx-' + &'-' (2.3) 

into the dominant terms (all in this case) and requiring that the coefficient of ,3 be zero. 
When (2.2) is used, the resonances are found to be r = -1 (as required) and r = 4 - a. 

Equation (1.1) passes the Painlev6 test if r is a positive integer which fixes U to one 
of the sequence of integers 3,2, 1, -1 , .  . .. (The value a = 0 is omitted due to (24 . )  
One could contemplate the weak Painlev6 test with a a rational number. However, for the 
moment we leave this analysis with two remarks. For k =- Q, U is complex. It has already 
been found (Leach et al 1988) that the critical value of k is and this is supported by the 
results so far of the Painlev6 analysis. We have identified a parameter, a, related to k which 
plays a critical role in the analysis. 

3. Reduction of order 

Since (1.1) has two symmetries GI, (1.2). and Gz, (1.3). with [GI, G2] = GI, the usual 
reduction of order is through the normal subgroup, GI, which yields an Abel equation of 
the second kind with the symmetry G2 preserved in the new co-ordinates. This symmetry 
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is used to transform the Abel equation into one of variables separable form. Under the 
transformation 

1 Y' 
Y Y2 

U = -  U = -- 

equation (1.1) becomes 

UUU' = 2uz - U  -I k 

which is immediately reduced to the quadrature /!$=;/ u du 
(U- ; ) (u+(z -a) /Za)  

when (2.2) is taken into account. On integration (3.3) becomes 

Ku2'4-u' = (. - -!) 2-'? (. + F ) 2  2 - a  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where K is the constant of integration, except in the special cases a = 2(k = 0) and 
01 = 4(k = 4) which are 

Ku2 = - L 2 (3.5) 

and 

(3.6) 2 I I Ku = (U - 4) e x ~ [ - ~ ( u  - a)] 

respectively. The reduction above is fork 5 4. Fork > 4 the quadrature of (3.2) gives 

There still remains the further quadrature because of the transformation (3.1). Even 
if the immediate step of U = U' is used, non-local inversion of (3.4) is not possible for 
general a. 

4. Hidden symmetry reduction 

The basic idea behind the hidden symmetry approach (Abraham-Shrauner 1993) is to 
increase the order of the given differential equation by one via a non-local transformation 
and then to reduce the order using one of the other symmetries to an equation of the same 
order as the original equation but with (one hopes) more symmetries. Equation (1.1) belongs 
to the class (Bouquet et ai 1991) 

y" + ymy' + k y k + l  = 0 (4.1 ) 

for which the non-local transformation is a slight generalization of the Riccati transformation. 
It is 

2 
m 

y = (1 + - ) ~ % l ' / u ) ' ~ ~ .  

u*u" + (9k - l)uf3 = 0. 

(4.2) 

In the case of (1.1) m = 1 and the resultant third-order equation is 

(4.3) 
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It is immediately obvious why (1.1) is easily integrated in the case of k = $. 
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Equation (4.3) has the three symmetries 

a 
ax 

a 
ax 
a 
au 

G1 =- 

G ~ = x -  

G ~ = u -  

= G I ,  [GI, . ”. = 0 and [Gz. G3] = ., i.e., the algebrais A1 $A2 (compared 
I)). The symmetry G3 is a natural consequence of the Riccati transformation. 

The reduction of the self-similar symmetry (1.3) whichcontains both x and y terms to one 
only in x may have some connection with the fact that all terms in (1.1) are dominant in 
the Painlev6 analysis. 

When (4.4) is used to redude the order of (4.3), the resulting equation is an Euler 
equation in the square of the new independent variable. A further transformation brings this 
into a linear constant coefficient form. Combining the two transformations we have 

(4.7) a U = l0gu w = u  

and (4.3) becomes 

W” - W’ + 2(9k - l ) ~  = 0. (4.8) 

Since (4.8) is a linear second-order equation, it is invariant under the actions of the generators 
of the eight-element algebra d(3, R). 

The solution of (4.8) is 

w = AeAlu + (4.9) 

(4.10) 

(except in the case k = i). The solution u(x)  of (4.3) is obtained from the inversion of the 
quadrature 

(4.11) 

A full discussion of the integration in (4.11) would necessitate the treatment of a number 
of cases resulting in a certain amount of repetition. To avoid this we consider only the case 
A and B both positive. The substitution 

us = (B/A)’/2sinht) (4.12) 

brings (4.1 I )  to the form 

(4.13) 

which can be evaluated when the exponent on the sinh is an integer. The form of the 
integral varies with the oddness or evenness of the integer. 
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For an integer, 2n, (4.10) gives 

n(2n + 1) 
(4n + k =  (4.14) 

and (Gradshteyn and Ryzhik (1980), equation 2.412.2) 

For an odd integer, 2n + 1, (4.10) gives 

(n + 1)(2n + 1) 
(4n + 3)2 

k =  (4.16) 

and (Gradshteyn and Ryzhik (1980), equation 2.412.3) 

2(-1)"(4n + 3)B""/' " coshzk+' t) 
x -xo = (4.17) 

k d  3An 

In terms of t) 

(4.18) 3A'"")12 cosh t) 
Bn/2 sinh"+' t) Y =  

when 

(4.19) 

In the case that n is an even integer, (4.18) with (4.13) provides a parametric solution and, 
when n is an odd integer, (4.18) with (4.17) does the same. 

It is possible to eliminate t) only in the cases n = O(k = 0), n = l(k = L) and 
n = 3(k = 6/49). The even values of n suffer from the mixture of t) and sinh q tenns. 
Nevertheless the solution is well-defined for all integer n. We note that, except for the 
trivial case k = 0, the parameter k belongs to the open interval (4. g), i.e., between the 
value for which (1.1) is linearizable and the critical value. 

9 

If k > $, the solution of (4.8) is 

w = e'l'(Asin8u + BcosSu) (4.20) 

where 

a=;- (4.21) 

The integral corresponding to (4.1 1) cannot be evaluated in terms of a finite combination 
of elementary functions. 

5. Weak Painlev6 property 

In section 4 we saw that (1.1) could be solved in parametric form when 

n = 0, l , . .  . n(n + 1) 
2(2n + 1)2 

k =  
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for which, since k < i, the constant (2 in the Painlev6 analysis takes the values 
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Z(2n + 1) 2(2n + 1) a =  
n + l  ' n 

(with n # 0 in the latter case) and the Kowalevskaya exponents are 
2 2 

n + l '  n 
r = -  -- 

(5.2) 

(5.3) 

respectively. 
For general n, r is non-integer and so (1.1) does not have the Painlev6 property for 

these values of k.  However, it is possible that (1.1) does have the weak Painlev6 property 
since r is rational. In the case of the first resonance calculation shows that the expansion 
should be in powers x2/'"+'' rather that XI/("+". Without going into the details of what is 
a routine calculation we find that 

(5.4) 

where b is the arbitrary constant which enters at the resonance. The weakPainlev6 property 
is satisfied. As we have already seen in section 4, for these values of k the solution of (1.1) 
can be written in parametric form. 

It has been claimed (Ablowitz er a1 1980) that a negative resonance (apart from r = -1 
which represents the arbitrariness of xo (Grammaticos er a1 1982)) is purely formal. This 
is not always the case. When all terms in an equation are dominant, it is obvious that the 
leading term behaviour does not indicate whether the leading term is the lowest or highest 
power in the series. The existence of a negative resonance (apart from r = -1) indicates 
that we have the highest power and not the lowesr power. Hence it is appropriate to insert 
the ansaw 

(5.5) 

into (1.1). We emphasise that this is the correct interpretation of a negative resonance (apart 
from r = -1) only in the case that all terms are. dominant. We find that 

2(%+1) -, { 1 +  (')*'" - + n2 - 2n - 2 (34'" 
Y =  n - 4  

4n4 - 1%' -5n2 +24n + 12 b 
2(n - 4)(n - 6) + . . .} 

where again b is the arbilmy constant introduced at the resonance. As with all series 
solutions obtained using the Painlev6 method, (5.6) is a formal solution. We conjecture that 
it represents an essential singularity at x = 0. This result, (5.6). is invalid for n = 4.6, . . . at 
which values the arbitrary constant, b, must be zero. These values give particular solutions 
to (1.1). It is an easy calculation to show for n an even integer, 2m, that 

4mf1 y e -  
mX 

is a particular solution of (1.1). 

(5.7) 
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Fgure 1. k = f: y(0)  = 0. y'(0) = -1. Divergent 
solution. solution 

Figure 2. k = f; y(0) = 0, y'(0) = 1. Decaying 

Figure 3. k = i; y(0) = 0, y'(0) = -1. Divergent 
solution indicates that k = 4 is the limiting w e  of the 
k -= behaviour. k c 4 behaviour. 

Figure 4. k = 4; y(0)  = 0, y'(0) = I. Decaying 
solution indicates that k = $ is the limiting case of the 

Y 

6. Discussion 

An interesting feature of (1.1) is the connection between the passing of the weak Painlev6 
test and the reduction of the solution to parametric form when k takes the values given 
in (5.1). Equation (1.1) can be reduced to quadratures via the symmetry approachdither 
direct or hidden-for any value of the parameter, k. However, the weak Painled property 
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is found only for the particular values of k given by (5.1). We observe the curious property 
that, apart from the trivial case k = 0, this feature is restricted to values of k in (b, i). 
(Recall that, when k = b. the parameter is easily eliminated) In terms of the behaviour of 
the solution, k = 4 is the critical value in that the solution passes from non-oscillatory to 
oscillatory (see figures 1 to 5). In Leach ef a1 (1988) it was stressed that it was this value 
rather than k = 4 which was the critical value. However, the present analysis strongly 
suggests that k = 6 is also a critical value although in a sense different to normal usage. 

In the initial treatment of the Painlev6 analysis we noted that the Kowalevskaya exponent 
was 4 -a. Clearly the Painlev6 test is satisfied for (Y = 3,2,1, -1,. . . (a cannot be zero). 
By way of example in the particular case (I = 1 we find that 

i.e. y is essentially a function in the variable [b(x -x0)l3.  It appears that for general integer 
a, the expansion is in powers of [b(x - x ~ ) ] ~ - " .  

If one performs the reduction of order via the hidden symmetry method with the 
substitution y = 4u'/u, the resulting quadrature is 

du 1 (Auq + B U - ~ ) ' / ~  x - x g  = (6.2) 

where q = 2(4 - or)/@. This can be evaluated in closed form for (Y = 3,2,1 which 
correspond to k = 4, 0 and -1  respectively. In contrast to the situation when the weak 
Painlev6 test is satisfied, the passing of the Painlev6 test does not coincide with expression 
of the solution in paramehic form (except for the special cases noted above). 
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